System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Designing fault tolerant systems into SRAM-based FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lima, F. ; Instituto de Informatica, Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil ; Carro, L. ; Reis, R.

This paper discusses high level techniques for designing fault tolerant systems in SRAM-based FPGAs, without modification in the FPGA architecture. Triple Modular Redundancy (TMR) has been successfully applied in FPGAs to mitigate transient faults, which are likely to occur in space applications. However, TMR comes with high area and power dissipation penalties. The new technique proposed in this paper was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while also reducing pin count, area and power dissipation. The methodology was validated by fault injection experiments in an emulation board. We present some fault coverage results and a comparison with the TMR approach.

Published in:

Design Automation Conference, 2003. Proceedings

Date of Conference:

2-6 June 2003