By Topic

A transformation based algorithm for reversible logic synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Miller, D.M. ; Dept. of Comput. Sci., Univ. of Victoria, BC, Canada ; Maslov, D. ; Dueck, G.W.

A digital combinational logic circuit is reversible if it maps each input pattern to a unique output pattern. Such circuits are of interest in quantum computing, optical computing, nanotechnology and low-power CMOS design. Synthesis approaches are not well developed for reversible circuits even for small numbers of inputs and outputs. In this paper, a transformation based algorithm for the synthesis of such a reversible circuit in terms of n × n Toffoli gates is presented. Initially, a circuit is constructed by a single pass through the specification with minimal look-ahead and no back-tracking. Reduction rules are then applied by simple template matching. The method produces very good results for larger problems.

Published in:

Design Automation Conference, 2003. Proceedings

Date of Conference:

2-6 June 2003