By Topic

Candid covariance-free incremental principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Juyang Weng ; Dept. of Comput. Sci. & Eng., Michigan State Univ., USA ; Yilu Zhang ; Wey-Shiuan Hwang

Appearance-based image analysis techniques require fast computation of principal components of high-dimensional image vectors. We introduce a fast incremental principal component analysis (IPCA) algorithm, called candid covariance-free IPCA (CCIPCA), used to compute the principal components of a sequence of samples incrementally without estimating the covariance matrix (so covariance-free). The new method is motivated by the concept of statistical efficiency (the estimate has the smallest variance given the observed data). To do this, it keeps the scale of observations and computes the mean of observations incrementally, which is an efficient estimate for some well known distributions (e.g., Gaussian), although the highest possible efficiency is not guaranteed in our case because of unknown sample distribution. The method is for real-time applications and, thus, it does not allow iterations. It converges very fast for high-dimensional image vectors. Some links between IPCA and the development of the cerebral cortex are also discussed.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 8 )