Cart (Loading....) | Create Account
Close category search window

A theoretical framework for relaxation processes in pattern recognition: application to robust nonparametric contour generalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Faber, P. ; Robert Bosch GmbH, Germany

While various approaches are suggested in the literature to describe and generalize relaxation processes concerning to several objectives, the wider problem addressed here is to find the best-suited relaxation process for a given assignment problem, or better still, to construct a task-dependent relaxation process. For this, we develop a general framework for the theoretical foundations of relaxation processes in pattern recognition. The resulting structure enables (1) a description of all known relaxation processes in general terms and (2) the design of task-dependent relaxation processes. We show that the well-known standard relaxation formulas verify our approach. Referring to the common problem of generating a generalized description of a contour we demonstrate the applicability of the suggested generalization in detail. Important characteristics of the constructed task-dependent relaxation process are: (1) the independency of the segmentation from any parameters, (2) the invariance to geometric transformations, (3) the simplicity, and (4) efficiency.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 8 )

Date of Publication:

Aug. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.