By Topic

Least squares support vector machines for direction of arrival estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rohwer, J.A. ; Sandia Nat. Labs., Albuquerque, NM, USA ; Abdallah, C.T. ; Christodoulou, C.G.

Machine learning research has largely been devoted to binary and multiclass problems relating to data mining, text categorization, and pattern/facial recognition. Recently, popular machine learning algorithms, including support vector machines (SVM), have successfully been applied to wireless communication problems. The paper presents a multiclass least squares SVM (LS-SVM) architecture for direction of arrival (DOA) estimation as applied to a CDMA cellular system. Simulation results show a high degree of accuracy, as related to the DOA classes, and prove that the LS-SVM DDAG (decision directed acyclic graph) system has a wide range of performance capabilities. The multilabel capability for multiple DOAs is discussed. Multilabel classification is possible with the LS-SVM DDAG algorithm presented.

Published in:

Antennas and Propagation Society International Symposium, 2003. IEEE  (Volume:1 )

Date of Conference:

22-27 June 2003