By Topic

A nonstationary traffic train model for fine scale inference from coarse scale counts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chuanhai Liu ; Bell Labs., Murray Hill, NJ, USA ; Vander Wiel, S. ; Jiahai Yang

The self-similarity of network traffic has been convincingly established based on detailed packet traces. This fundamental result promises the possibility of solving on-line and off-line traffic engineering problems using easily collectible coarse time-scale data, such as simple network management protocol measurements. This paper proposes a statistical model that supports predicting fine time-scale behavior of network traffic from coarse time-scale aggregate measurements. The model generalizes the commonly used fractional Gaussian noise process in two important ways: (1) it accommodates the recurring daily load patterns commonly observed on backbone links and (2) features of long range dependence and self-similarity are modeled only at fine time scales and are progressively damped as the time period increases. Using the data we collected on the Chinese Education and Research Network, we demonstrate that the proposed model fits 5-min data and generates 10-s aggregates that are similar to actual 10-s data.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 6 )