Cart (Loading....) | Create Account
Close category search window
 

Fast anisotropic Gauss filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Geusebroek, J.-M. ; Dept. of Comput. Sci., Univ. of Amsterdam, Netherlands ; Smeulders, A.W.M. ; van de Weijer, J.

We derive the decomposition of the anisotropic Gaussian in a one-dimensional (1-D) Gauss filter in the x-direction followed by a 1-D filter in a nonorthogonal direction φ. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computing perspective. An implementation scheme for normal convolution and for recursive filtering is proposed. Also directed derivative filters are demonstrated. For the recursive implementation, filtering an 512 × 512 image is performed within 40 msec on a current state of the art PC, gaining over 3 times in performance for a typical filter, independent of the standard deviations and orientation of the filter. Accuracy of the filters is still reasonable when compared to truncation error or recursive approximation error. The anisotropic Gaussian filtering method allows fast calculation of edge and ridge maps, with high spatial and angular accuracy. For tracking applications, the normal anisotropic convolution scheme is more advantageous, with applications in the detection of dashed lines in engineering drawings. The recursive implementation is more attractive in feature detection applications, for instance in affine invariant edge and ridge detection in computer vision. The proposed computational filtering method enables the practical applicability of orientation scale-space analysis.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 8 )

Date of Publication:

Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.