Cart (Loading....) | Create Account
Close category search window
 

Modeling of electron mobility degradation by remote Coulomb scattering in ultrathin oxide MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Esseni, D. ; DIEGM, Univ. of Udine, Italy ; Abramo, A.

This paper presents a comprehensive, numerical model for the remote Coulomb scattering (RCS) in ultrathin gate oxide MOSFETs due to ionized impurities in the polysilicon. Using a nonlocal screening approach, the model accounts for the static screening of the scattering centers produced both by electrons in the channel and in the polysilicon. Electron mobility is then calculated using a relaxation time approximation that consistently accounts for intersubband transitions and multisubband transport. Our results indicate that neglecting the screening in the polysilicon and making use of the Quantum Limit (QL) approximation can lead to a severe underestimate of the RCS limited electron mobility, thus hampering the accuracy of the predictions reported in some previous papers on this topic. Using our model, we discuss the oxide thickness dependence of the electron mobility in ultrathin gate oxide MOSFETs and the possible benefits in terms of RCS limited mobility leveraged by the use of high K dielectrics.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 7 )

Date of Publication:

July 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.