Cart (Loading....) | Create Account
Close category search window

Numerical analysis of alpha-particle-induced soft errors in floating channel type surrounding gate transistor (FC-SGT) DRAM cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matsuoka, F. ; Res. Inst. of Electr. Commun., Tohoku Univ., Sendai, Japan ; Masuoka, F.

This paper clarifies alpha-particle-induced soft error mechanisms in floating channel type surrounding gate transistor (FC-SGT) DRAM cells. One FC-SGT DRAM cell consists of an FC-SGT and a three-dimensional (3-D) storage capacitor. The cell itself arranges bit line (BL), storage node and body region in a silicon pillar vertically and achieves cell area of 4F2 (F: feature size) per bit. In FC-SGT DRAM cells, the parasitic bipolar current is a major factor to cause soft errors. When an alpha particle penetrates the silicon pillar, generated electrons are collected to the storage node or BL due to the tunneling and diffusion mechanisms. On the other hand, holes are swept into the body region and accumulated. Consequently, the current flows not only in the surface but also in the entire body region due to the floating body effect. This parasitic bipolar current becomes the largest when an alpha particle penetrates the silicon pillar along the vertical axis. However, in case of FC-SGT DRAM cells, the surrounding gate structure can suppress the floating body effect compared with floating channel type SOI DRAM cells. As a result, the loss of the stored charge in the storage capacitor can be drastically decreased by using FC-SGT DRAM cell. Therefore, FC-SGT DRAM is a promising candidate for future high-density DRAMs having high soft-error immunity.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 7 )

Date of Publication:

July 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.