By Topic

A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qiang Chen ; Microelectron. Res. Center, Georgia Inst. of Technol., Atlanta, GA, USA ; E. M. Harrell ; J. D. Meindl

A compact, physical, short-channel threshold voltage model for undoped symmetric double-gate MOSFETs has been derived based on an analytical solution of the two-dimensional (2-D) Poisson equation with the mobile charge term included. The new model is verified by published numerical simulations with close agreement. Applying the newly developed model, threshold voltage sensitivities to channel length, channel thickness, and gate oxide thickness have been comprehensively investigated. For practical device designs the channel length causes 30-50% more threshold voltage variation than does the channel thickness for the same process tolerance, while the gate oxide thickness causes the least, relatively insignificant threshold voltage variation. Model predictions indicate that individual DG MOSFETs with good turn-off behavior are feasible at 10 nm scale; however, practical exploitation of these devices toward gigascale integrated systems requires development of novel technologies for significant improvement in process control.

Published in:

IEEE Transactions on Electron Devices  (Volume:50 ,  Issue: 7 )