By Topic

Improvement of trajectory tracking for industrial robot arms by learning control with B-spline

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ozaki, H. ; Dept. of Mech. Eng., Fukuoka Univ., Japan ; Hirano, K. ; Iwamura, M. ; Chang-Jun Lin
more authors

This paper describes that a learning control algorithm with B-spline is effective to improve the trajectory tracking accuracy of an industrial robot and shows the results of simulation and experiment. The learning control method consists of two processes: Global Learning (GL) and Local Learning (LL). GL estimates the dynamics of a robot control system and obtains a learning gain matrix used in LL. LL decreases the tracking errors by iterative trial movements and acquires satisfactory tracking accuracy. The learning algorithm needs only measuring of position errors from a desired trajectory and does not require any derivatives of them. As the input trajectories after the convergence of learning are expressed by B-spline curves, they are easily memorized as input patterns corresponding to specified works.

Published in:

Assembly and Task Planning, 2003. Proceedings of the IEEE International Symposium on

Date of Conference:

10-11 July 2003