By Topic

A new relaxation algorithm and passive sensor data association

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. R. Pattipati ; Dept. of Electr. & Syst. Eng., Connecticut Univ., Storrs, CT, USA ; S. Deb ; Y. Bar-Shalom ; R. B. Washburn

The static problem of associating measurements at a given time from three angle-only sensors in the presence of clutter, missed detections, and an unknown number of targets is addressed. The measurement-target association problem is formulated as one of maximizing the joint likelihood function of the measurement partition. Mathematically, this formulation leads to a generalization of the 3-D assignment (matching) problem, which is known to be NP hard. The solution to the optimization problem developed is a Lagrangian relaxation technique that successively solves a series of generalized two-dimensional (2-D) assignment problems. The algorithm is illustrated by several application examples

Published in:

IEEE Transactions on Automatic Control  (Volume:37 ,  Issue: 2 )