By Topic

A 1-V 3.8 - 5.7-GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fong, N.H.W. ; Cognio Canada Inc., Ottawa, Ont., Canada ; Plouchart, J.-O. ; Zamdmer, N. ; Duixian Liu
more authors

In this paper, a 1-V 3.8 - 5.7-GHz wide-band voltage-controlled oscillator (VCO) in a 0.13-μm silicon-on-insulator (SOI) CMOS process is presented. This VCO features differentially tuned accumulation MOS varactors that: 1) provide 40% frequency tuning when biased between 0 - 1 V and 2) diminish the adverse effect of high varactor sensitivity through rejection of common-mode noise. This paper shows that, for differential LC VCOs, all low-frequency noise such as flicker noise can be considered to be common-mode noise, and differentially tuned varactors can be used to suppress common-mode noise from being upconverted to the carrier frequency. The noise rejection mechanism is explained, and the technological advantages of SOI over bulk CMOS in this regard is discussed. At 1-MHz offset, the measured phase noise is -121.67 dBc/Hz at 3.8 GHz, and -111.67 dBc/Hz at 5.7 GHz. The power dissipation is between 2.3 - 2.7-mW, depending on the center frequency, and the buffered output power is -9 dBm. Due to the noise rejection, the VCO is able to operate at very low voltage and low power. At a supply voltage of 0.75 V, the VCO only dissipates 0.8 mW at 5.5 GHz.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 8 )