Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A new design method for the complex-valued multistate Hopfield associative memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Muezzinoglu, M.K. ; Dept. of Electr. Eng., Louisville Univ., KY, USA ; Guzelis, C. ; Zurada, J.M.

A method to store each element of an integral memory set M ⊂ {1,2,...,K}n as a fixed point into a complex-valued multistate Hopfield network is introduced. The method employs a set of inequalities to render each memory pattern as a strict local minimum of a quadratic energy landscape. Based on the solution of this system, it gives a recurrent network of n multistate neurons with complex and symmetric synaptic weights, which operates on the finite state space {1,2,...,K}n to minimize this quadratic functional. Maximum number of integral vectors that can be embedded into the energy landscape of the network by this method is investigated by computer experiments. This paper also enlightens the performance of the proposed method in reconstructing noisy gray-scale images.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 4 )