Cart (Loading....) | Create Account
Close category search window

Neural-network construction and selection in nonlinear modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rivals, I. ; Equipe de Statistique Appliquee, Ecole Superieure de Phys. et de Chimie Industrielles, Paris, France ; Personnaz, L.

We study how statistical tools which are commonly used independently can advantageously be exploited together in order to improve neural network estimation and selection in nonlinear static modeling. The tools we consider are the analysis of the numerical conditioning of the neural network candidates, statistical hypothesis tests, and cross validation. We present and analyze each of these tools in order to justify at what stage of a construction and selection procedure they can be most useful. On the basis of this analysis, we then propose a novel and systematic construction and selection procedure for neural modeling. We finally illustrate its efficiency through large-scale simulations experiments and real-world modeling problems.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 4 )

Date of Publication:

July 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.