By Topic

A novel high-order associative memory system via discrete Taylor series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ning-Shou Xu ; Dept. of Autom. Control, Beijing Univ. of Technol., China ; Yun-Fei Bai ; Li Zhang

This paper proposes a novel high-order associative memory system (AMS) based on the discrete Taylor series (DTS). The mathematical foundation for the new AMS scheme is derived, three training algorithms are proposed, and the convergence of learning is proved. The DTS-AMS thus developed is capable of implementing error-free approximation to multivariable polynomial functions of arbitrary order. Compared with cerebellar model articulation controllers and radial basis function neural networks, it provides higher learning precision and less memory request. Furthermore, it offers less training computation and faster convergence rate than that attainable by multilayer perceptron. Numerical simulations show that the proposed DTS-AMS is effective in higher order function approximation and has potential in practical applications.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 4 )