By Topic

Molecule cascades: nanometer-scale molecular architectures that compute

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
C. P. Lutz ; IBM Res. Div., Almaden Res. Center, San Jose, CA, USA ; A. J. Heinrich ; J. A. Gupta ; D. M. Eigler

We present a nanometer-scale computation scheme in which all of the devices and interconnects required for the one-time computation of an arbitrary logic function are implemented by atomically-precise arrangements of molecules bound to a surface. The motion of one CO molecule on a Cu (111) surface causes a nearby molecule to hop to a new site, which in turn moves another molecule, and so on in a cascade of motion similar to a row of toppling dominoes. This cascade communicates one bit of information across the surface. Logic gates and other devices are implemented by engineered arrangements of molecules at the intersections of these cascades. We use a low-temperature scanning tunnelling microscope to assemble and demonstrate a 3-input sorter that uses several AND gates and OR gates, and the crossover and fan-out units needed to connect them.

Published in:

TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003  (Volume:1 )

Date of Conference:

8-12 June 2003