Cart (Loading....) | Create Account
Close category search window
 

Model-based digital halftoning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pappas, T.N. ; Massachusetts Institute of Technology ; Allebach, J.P. ; Neuhoff, D.L.

Digital halftoning is the process of generating a pattern of pixels with a limited number of colors that, when seen by the human eye, is perceived as a continuous-tone image. Digital halftoning is used to display continuous-tone images in media in which the direct rendition of the tones is impossible. The most common example of such media is ink or toner on paper, and the most common rendering devices for such media are, of course, printers. Halftoning works because the eye acts as a spatial low-pass filter that blurs the rendered pixel pattern, so that it is perceived as a continuous-tone image. Although all halftoning methods rely at least implicitly, on some understanding of the properties of human vision and the display device, the goal of model-based halftoning techniques is to exploit explicit models of the display device and the human visual system (HVS) to maximize the quality of the displayed images. Based on the type of computation involved, halftoning algorithms can be broadly classified into three categories: point algorithms (screening or dithering), neighborhood algorithms (error diffusion), and iterative algorithms [least squares and direct binary search (DBS)]. All of these algorithms can incorporate HVS and printer models. The best halftone reproductions, however, are obtained by iterative techniques that minimize the (squared) error between the output of the cascade of the printer and visual models in response to the halftone image and the output of the visual model in response to the original continuous-tone image.

Published in:

Signal Processing Magazine, IEEE  (Volume:20 ,  Issue: 4 )

Date of Publication:

July 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.