By Topic

Database support for 3D-protein data set analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hinneburg, A. ; Inst. of Comput. Sci., Halle Univ., Germany ; Lehner, W.

The progress in genome research demands for an adequate infrastructure to analyze the data sets. Database systems reflect a key technology to organize data and speed up the analysis process. This paper discusses the role of a relational database system based on the problem of finding frequent substructures in multi-dimensional protein databases. The specific problem consists of producing a set of association rules regarding frequent substructures with different lengths and gaps between the amino acid residues of a protein. From a database point of view, the process of finding association rules building the base for a more in-depth analysis of the data material is split into two parts. The first part performs a discretization of the conformational angle space of a single amino acid residue by computing the nearest neighbor of a given set of representatives. The second part consists in adapting a well-known association rule algorithm to determine the frequent substructures. Both steps within this comprehensive analysis task requires substantial support of the underlying database in order to reduce the programming overhead at the application level.

Published in:

Scientific and Statistical Database Management, 2003. 15th International Conference on

Date of Conference:

9-11 July 2003