By Topic

Compact linear lead/lag metamaterial phase shifters for broadband applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Antoniades, M.A. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Eleftheriades, G.V.

A compact one-dimensional phase shifter is proposed using alternating sections of negative refractive index (NRI) metamaterials and printed transmission lines (TL). The NRI metamaterial sections consist of lumped element capacitors and inductors, arranged in a dual TL (high-pass) configuration. By adjusting the NRI-medium lumped element values, the phase shift can be tailored to a given specification. Periodic analysis is applied to the structure and design equations are presented for the determination of the lumped element parameters for any arbitrary phase shift. To validate the design, various phase shifters are simulated and tested in coplanar waveguide (CPW) technology. It is demonstrated that small variations in the NRI-medium lumped element values can produce positive, negative or 0/spl deg/ phase shifts while maintaining the same short overall length. Thus, the new phase shifter offers some significant advantages over conventional delay lines: it is more compact in size, it exhibits a linear phase response around the design frequency, it can incur a phase lead or lag which is independent of the length of the structure and it exhibits shorter group delays.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:2 ,  Issue: 1 )