Cart (Loading....) | Create Account
Close category search window
 

Multisampling decision-feedback linear prediction receivers for differential space-time modulation over Rayleigh fast-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cong Ling ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Kwok Hung Li ; Kot, A.C. ; Zhang, Q.T.

Novel decision-feedback (DF) linear prediction (LP) receivers, which process multiple samples per symbol interval in conjunction with optimal sample combining, are proposed for differential space-time modulation (DSTM) over Rayleigh fast-fading channels. Performance analysis demonstrates that multisampling DF-LP receivers outperform their symbol-rate sampling counterpart in fast fading substantially. In addition, an asymptotically tight upper bound on the pairwise error probability is derived. In view of this bound, the design criterion of DSTM for fast fading is the same as that for block-wise static fading. To avoid the estimation of the second-order statistics of the channel, a polynomial-model-based DF-LP receiver is proposed. It can approach the performance of the optimum DF-LP receiver at high signal-to noise ratios, provided fading is moderate.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 7 )

Date of Publication:

July 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.