By Topic

Rapid combined synchronization/demodulation structures for DS-CDMA systems - part II: finite data-record performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Psaromiligkos, I.N. ; Dept. of Electr. Eng., State Univ. of New York, Buffalo, NY, USA ; Batalama, S.N.

For pt.I see ibid., vol.51, p.983-94 (2003). We investigate the coarse synchronization performance of blind adaptive linear self-synchronized receivers for asynchronous direct-sequence code-division multiple-access communications under finite data record adaptation. Based on transformation noise modeling techniques, three alternative methods are developed, leading to analytical expressions that approximate the probability of coarse synchronization error of matched-filter-type and minimum-variance distortionless-response-type receivers. The expressions are explicit functions of the data record size and the filter order and reveal the effect of short data-record sample matrix-inversion implementations on the coarse synchronization performance. Besides their theoretical value, the derived expressions provide simple, highly-accurate alternatives to computationally demanding performance evaluation through simulations. The effect of the data record size on the probability of coarse synchronization error is further quantified through the use of a receiver synchronization resolution metric. Numerical and simulation studies examine the accuracy of the theoretical developments and show that the derived expressions approximate closely the actual coarse synchronization performance.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 7 )