By Topic

An efficient hybrid decoding algorithm for Reed-Solomon codes based on bit reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ta-Hsiang Hu ; Dept. of Electr. Eng., Chung Cheng Inst. of Technol.-Nat. Defense Univ., Tao-Yuan, Taiwan ; Shu Lin

The paper presents a computationally efficient hybrid reliability-based decoding algorithm for Reed-Solomon (RS) codes. This hybrid decoding algorithm consists of two major components, a re-encoding process and a successive erasure-and-error decoding process for both bit and symbol levels. The re-encoding process is to generate a sequence of candidate codewords based on the information provided by the codeword decoded by an algebraic decoder and a set of test error patterns. Two criteria are used for testing in the decoding process to reduce the decoding computational complexity. The first criterion is devised to reduce the number of re-encoding operations by eliminating the unlikely error patterns. The second criterion is to test the optimality of a generated candidate codeword. Numerical results show that the proposed decoding algorithm can achieve either a near-optimum error performance or an asymptotically optimum error performance.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 7 )