By Topic

Received signal statistics in DS-CDMA channels with flat Rayleigh fading and fast closed-loop power control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moh Lim Sim ; Fac. of Eng., Multimedia Univ., Cyberjaya, Malaysia ; Hean Teik Chuah

The statistics of received signal power at the receiver in a cellular direct-sequence code-division multiple-access (DS-CDMA) system with flat Rayleigh fading and fast closed-loop power control mechanism are studied. A simple model for the fast closed-loop power control mechanism is proposed to ease the analysis. The probability density function (pdf) of the received signal power is derived by taking into consideration the updating frequency of power control mechanism, maximum allowable transmitted power, and Doppler frequency of the fading channel. The pdf derived can be used to study the performance of a reverse-link DS-CDMA system with noncoherent M-ary orthogonal modulation. The result shows that when optimum maximum allowable transmitted power is used, system capacity can be substantially increased for typical normalized Doppler frequency in cellular communication.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 7 )