By Topic

Information conveyed through brain-control: cursor versus robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taylor, D.M. ; Bioeng. Dept., Arizona State Univ., Tempe, AZ, USA ; Tillery, S.I.H. ; Schwartz, A.B.

Microwire electrode arrays were implanted in the motor and premotor cortical areas of rhesus macaques. The recorded activity was used to control the three-dimensional movements of a virtual cursor and of a robotic arm in real time. The goal was to move the cursor or robot to one of eight targets. Average information conveyed about the intended target was calculated from the observed trajectories at 30-ms intervals throughout the movements. Most of the information about intended target was conveyed within the first second of the movement. For the brain-controlled cursor, the instantaneous information transmission rate was at its maximum at the beginning of each movement (averaged 4.8 to 5.5 bits/s depending on the calculation method used). However, this instantaneous rate quickly slowed down as the movement progressed and additional information became redundant. Information was conveyed more slowly through the brain-controlled robot due to the dynamics and noise of the robot system. The brain-controlled cursor data was also used to demonstrate a method for optimizing information transmission rate in the case where repeated cursor movements are used to make long strings of sequential choices such as in a typing task.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )