Cart (Loading....) | Create Account
Close category search window
 

Comparison of linear, nonlinear, and feature selection methods for EEG signal classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The reliable operation of brain-computer interfaces (BCIs) based on spontaneous electroencephalogram (EEG) signals requires accurate classification of multichannel EEG. The design of EEG representations and classifiers for BCI are open research questions whose difficulty stems from the need to extract complex spatial and temporal patterns from noisy multidimensional time series obtained from EEG measurements. The high-dimensional and noisy nature of EEG may limit the advantage of nonlinear classification methods over linear ones. This paper reports the results of a linear (linear discriminant analysis) and two nonlinear classifiers (neural networks and support vector machines) applied to the classification of spontaneous EEG during five mental tasks, showing that nonlinear classifiers produce only slightly better classification results. An approach to feature selection based on genetic algorithms is also presented with preliminary results of application to EEG during finger movement.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 2 )

Date of Publication:

June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.