By Topic

A novel discrete control strategy for independent stabilization of parallel three-phase boost converters by combining space-vector modulation with variable-structure control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
S. K. Mazumder ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Chicago, IL, USA

We propose a discrete nonlinear controller, developed in a synchronous frame, for a parallel three-phase boost converter consisting of two modules. The basic idea, however, can be extended to a system with N modules. Each of the closed-loop power-converter modules operates asynchronously without any communication with the other modules. The controller stabilizes the currents on the dq-axes and limits the flow of the pure-zero sequence current. It combines the space-vector modulation scheme with a variable-structure control, thereby keeping the switching frequency constant and achieving satisfactory dynamic performance.

Published in:

IEEE Transactions on Power Electronics  (Volume:18 ,  Issue: 4 )