By Topic

An acoustic proximity ranging system for monitoring the cavity thickness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

To control high speed underwater vehicles, a proximity ranging system is needed to monitor the cavity thickness. In this paper, we study a time-of-flight (TOF) principle based acoustic proximity ranging system. By taking into account the acoustically hard boundary at the air-water interface, we first present a two-stage computationally efficient time delay estimation algorithm, referred to as the PEARS (Parameter Estimation for Acoustic Ranging Systems) algorithm, which is applicable to arbitrary transmitted waveforms. Numerical results based on a simulated waveform demonstrate that the PEARS estimates can approach the Cramer-Rao bound as the signal-to-noise ratio increases. We then present experiments performed by using commercially available acoustic transducers to further verify our method. To update TOF estimates quickly, a specially designed continuous wave (CW) is applied to the transducer. Experimental results show that PEARS can achieve high measurement accuracy for ranging distances less than 100 mm with an achievable parameter update rate of approximately 1.5 kHz.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:50 ,  Issue: 7 )