By Topic

Efficient data parallel algorithms for multidimensional array operations based on the EKMR scheme for distributed memory multicomputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chun-Yuan Lin ; Dept. of Inf. Eng., Feng Chia Univ., Taichung, Taiwan ; Yeh-Ching Chung ; Jen-Shiuh Liu

Array operations are useful in a large number of important scientific codes, such as molecular dynamics, finite element methods, climate modeling, atmosphere and ocean sciences, etc. In our previous work, we have proposed a scheme of extended Karnaugh map representation (EKMR) for multidimensional array representation. We have shown that sequential multidimensional array operation algorithms based on the EKMR scheme have better performance than those based on the traditional matrix representation (TMR) scheme. Since parallel multidimensional array operations have been an extensively investigated problem, we present efficient data parallel algorithms for multidimensional array operations based on the EKMR scheme for distributed memory multicomputers. In a data parallel programming paradigm, in general, we distribute array elements to processors based on various distribution schemes, do local computation in each processor, and collect computation results from each processor. Based on the row, column, and 2D mesh distribution schemes, we design data parallel algorithms for matrix-matrix addition and matrix-matrix multiplication array operations in both TMR and EKMR schemes for multidimensional arrays. We also design data parallel algorithms for six Fortran 90 array intrinsic functions: All, Maxval, Merge, Pack, Sum, and Cshift. We compare the time of the data distribution, the local computation, and the result collection phases of these array operations based on the TMR and the EKMR schemes. The experimental results show that algorithms based on the EKMR scheme outperform those based on the TMR scheme for all test cases.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:14 ,  Issue: 7 )