Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Floating effective back-gate effect on the small-signal output conductance of SOI MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kilchytska, V. ; Microelectron. Lab., Univ. Catholique de Louvain, Belgium ; Levacq, D. ; Lederer, D. ; Raskin, J.P.
more authors

This paper investigates the influence of the silicon substrate on the ac characteristics of silicon-on-insulator (SOI) MOSFETs. It is shown for the first time that the presence of the substrate underneath the buried oxide results in two transitions (i.e., zero-pole doublets) in the frequency response of the output conductance. It is demonstrated that the appearance of these transitions, the position and amplitude of which strongly depend on the substrate doping, is caused by the variation of the potential at substrate-buried oxide interface, which we call the Floating Effective Back-Gate (FEBG) effect. A first-order small-signal equivalent circuit is proposed to support our observations.

Published in:

Electron Device Letters, IEEE  (Volume:24 ,  Issue: 6 )