By Topic

Myocardial kinematics from tagged MRI based on a 4-D B-spline model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tustison, N.J. ; Cardiovascular Image Anal. Lab., Washington Univ., St. Louis, MO, USA ; Davila-Roman, V.G. ; Amini, A.A.

Current research investigating the modeling of left ventricular dynamics for accurate clinical assessment of cardiac function is extensive. Magnetic resonance (MR) tagging is a functional imaging method which allows for encoding of a grid of signal voids on cardiac MR images, providing a mechanism for noninvasive measurement of intramural tissue deformations, in vivo. We present a novel technique of employing a four-dimensional (4-D) B-spline model which permits concurrent determination of myocardial beads and myocardial strains. The method entails fitting the knot planes of the 4-D B-spline model for fixed times to a sequence of triplets of orthogonal sets of tag surfaces for all imaged volumetric frames within the constraints of the model's spatio-temporal internal energy. From a three-dimensional (3-D) displacement field, the corresponding long and short-axis Lagrangian normal, shear, and principal strain maps are produced. As an important byproduct, the points defined by the 3-D intersections of the triplets of orthogonal tag planes, which we refer to as myocardial beads, can easily be determined by our model. Displaying the beads as a movie loop allows for the visualization of the nonrigid movement of the left ventricle in 3-D.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 8 )