Cart (Loading....) | Create Account
Close category search window

Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kauffmann, C. ; ArthroVision, Montreal, Canada ; Gravel, P. ; Godbout, B. ; Gravel, A.
more authors

The primary objective of this study was to develop a computer-aided method for the quantification of three-dimensional (3-D) cartilage changes over time in knees with osteoarthritis (OA). We introduced a local coordinate system (LCS) for the femoral and tibial cartilage boundaries that provides a standardized representation of cartilage geometry, thickness, and volume. The LCS can be registered in different data sets from the same patient so that results can be directly compared. Cartilage boundaries are segmented from 3-D magnetic resonance (MR) slices with a semi-automated method and transformed into offset-maps , defined by the LCS. Volumes and thickness are computed from these offset-maps. Further anatomical labeling allows focal volumes to be evaluated in predefined subregions. The accuracy of the automated behavior of the method was assessed, without any human intervention, using realistic, synthetic 3-D MR images of a human knee. The error in thickness evaluation is lower than 0.12 mm for the tibia and femur. Cartilage volumes in anatomical subregions show a coefficient of variation ranging from 0.11% to 0.32%. This method improves noninvasive 3-D analysis of cartilage thickness and volume and is well suited for in vivo follow-up clinical studies of OA knees.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 8 )

Date of Publication:

Aug. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.