Cart (Loading....) | Create Account
Close category search window
 

Robust estimation of fetal heart rate variability using Doppler ultrasound

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fernando, Kumari L. ; Dept. of Electr. & Comput. Eng., Univ. of Utah, Salt Lake City, UT, USA ; Mathews, V.J. ; Varner, M.W. ; Clark, Edward B.

This paper presents a new measure of heart rate variability (HRV) that can be estimated using Doppler ultrasound techniques and is robust to variations in the angle of incidence of the ultrasound beam and the measurement noise. This measure employs the multiple signal characterization (MUSIC) algorithm which is a high-resolution method for estimating the frequencies of sinusoidal signals embedded in white noise from short-duration measurements. We show that the product of the square-root of the estimated signal-to-noise ratio (SNR) and the mean-square error of the frequency estimates is independent of the noise level in the signal. Since varying angles of incidence effectively changes the input SNR, this measure of HRV is robust to the input noise as well as the angle of incidence. This paper includes the results of analyzing synthetic and real Doppler ultrasound data that demonstrates the usefulness of the new measure in HRV analysis.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 8 )

Date of Publication:

Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.