By Topic

An analytical subthreshold current model for pocket-implanted NMOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ho, C.S. ; R&D Div., Hsinchu, Taiwan ; Liou, J.J. ; Kuo-Yin Huang ; Chin-Chang Cheng

An analytical subthreshold current model for metal oxide semiconductor field effect transistors (MOSFETs) with pocket implantation is presented. The model is developed based on considering an averaged localized pileup of channel dopants near the source and drain ends of channel to account for the pocket implantation effect and to derive the channel potential using a pseudo-two-dimensional (2-D) method. This, together with the conventional drift-diffusion theory, leads to the development of a subthreshold current model for pocket-implanted MOS devices. Model verification is carried out using data measured from a set of pocket-implanted NMOSFETs fabricated from a 0.17-μm, DRAM process. Very good agreement is obtained between the model calculations and measurement results.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 6 )