By Topic

Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng, C.F. ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., China ; Poon, V.M.C. ; Kok, C.W. ; Chan, M.

The growth mechanism of metal-induced-lateral-crystallization (MILC) was studied and modeled. Based on the time evolution of the metal impurity in the amorphous silicon film being crystallized, a model has been developed to predict the growth rate and the final metal distribution in the crystallized polysilicon. The model prediction has been compared with experimental results and high prediction accuracy is demonstrated. Using the model, the effects of annealing temperature, annealing time and initial metal concentration on the final grain size and metal impurity distribution can be analyzed. As a result, the model can be used to optimize the grain growth conditions for fabricating high performance thin-film-transistors on the recrystallized polysilicon film.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 6 )