By Topic

Amplitude and phase evolution of optical fields inside periodic photonic structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fluck, E. ; Dept. of Appl. Phys., Univ. of Twente, Enschede, Netherlands ; Hammer, M. ; Otter, A.M. ; Korterik, J.P.
more authors

Optical amplitude distributions of light inside periodic photonic structures are visualized with subwavelength resolution. In addition, using a phase-sensitive photon scanning tunneling microscope, we simultaneously map the phase evolution of light. Two different structures, which consist of a ridge waveguide containing periodic arrays of nanometer scale features, are investigated. We determine the wavelength dependence of the exponential decay rate inside the periodic arrays. Furthermore, various interference patterns are observed, which we interpret as interference between light reflected by the substrate and light inside the waveguide. The phase information obtained reveals scattering phenomena around the periodic array, which gives rise to phase jumps and phase singularities. Locally around the air rods, we observe an unexpected change in effective refractive index, a possible indication for anomalous dispersion resulting from the periodicity of the array.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 5 )