Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Extraction of 3D information from sonar image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Trucco, A. ; Dept. of Biophys. & Electron. Eng., Univ. of Genoa, Genova, Italy ; Curletto, S.

This paper describes a set of methods that make it possible to estimate the position of a feature inside a three-dimensional (3D) space by starting from a sequence of two-dimensional (2D) acoustic images of the seafloor acquired with a sonar system. Typical sonar imaging systems are able to generate just 2D images, and the acquisition of 3D information involves sharp increases in complexity and costs. The front-scan sonar proposed in this paper is a new equipment devoted to acquiring a 2D image of the seafloor to sail over, and allows one to collect a sequence of images showing a specific feature during the approach of the ship. This fact seems to make it possible to recover the 3D position of a feature by comparing the feature positions along the sequence of images acquired from different (known) ship positions. This opportunity is investigated in the paper, where it is shown that encouraging results have been obtained by a processing chain composed of some blocks devoted to low-level processing, feature extraction and analysis, a Kalman filter for robust feature tracking, and some ad hoc equations for depth estimation and averaging. A statistical error analysis demonstrated the great potential of the proposed system also if some inaccuracies affect the sonar measures and the knowledge of the ship position. This was also confirmed by several tests performed on both simulated and real sequences, obtaining satisfactory results on both the feature tracking and, above all, the estimation of the 3D position.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:33 ,  Issue: 4 )