By Topic

Representation and classification of 3-D objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Csakany ; Sch. of Eng. & Phys. Sci., Heriot-Watt Univ., Edinburgh, UK ; A. M. Wallace

This paper addresses the problem of generic object classification from three-dimensional depth or meshed data. First, surface patches are segmented on the basis of differential geometry and quadratic surface fitting. These are represented by a modified Gaussian image that includes the well-known shape index. Learning is an interactive process in which a human teacher indicates corresponding patches, but the formation of generic classes is unaided. Classification of unknown objects is based on the measurement of similarities between feature sets of the objects and the generic classes. The process is demonstrated on a group of three-dimensional (3-D) objects built from both CAD and laser-scanned depth data.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:33 ,  Issue: 4 )