By Topic

Memory-efficient kronecker algorithms with applications to the modelling of parallel systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Parallel and distributed systems can be modelled as a set of interacting components. This has an impact on the mathematical structure of the model, namely it induces a product form represented by a tensor product. We present a new algorithm for computing the solution of large Markov chain models whose generators can be represented in the form of a generalized tensor algebra, such as networks of stochastic automata. The tensor structure inherently involves a product state space but inside this product state space, the actual reachable state space can be much smaller. For such cases, we propose an improvement of the standard numerical algorithm, the so-called "shuffle algorithm", which necessitates only vectors of the size of the actual state space. With this contribution, numerical algorithms based on tensor products can now handle much larger models, even with functional rates and synchronizing events.

Published in:

Parallel and Distributed Processing Symposium, 2003. Proceedings. International

Date of Conference:

22-26 April 2003