Cart (Loading....) | Create Account
Close category search window
 

An approach to optimizing adaptive parabolic PDE solvers for the Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Adve, V. ; Illinois Univ., IL, USA ; Browne, J. ; Ensink, B. ; Rice, J.
more authors

The method of lines is a widely used algorithm for solving parabolic partial differential equations that could benefit greatly from implementation on Grid computing environments. This paper outlines the issues involved in executing method-of-lines codes on a Grid and in developing model-driven adaptive control strategies for these codes. We have developed a parameterizable benchmark called MOL that captures a wide range of realistic method-of-lines codes. We are using this benchmark to develop performance models that can be used to achieve specific optimality criteria under the available (and dynamically varying) resources of a Grid environment, and under user-specified goals for solution error and computational rate-of-progress. We are developing a componentization strategy that can enable effective adaptive control of MOL, as well as language and compiler support that can simplify the development of adaptive distributed applications. If successful, this work should yield a much better understanding than we have at present of how an important class of parallel numerical applications can be executed effectively in a dynamic Grid environment.

Published in:

Parallel and Distributed Processing Symposium, 2003. Proceedings. International

Date of Conference:

22-26 April 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.