By Topic

Self-adapting, self-optimizing runtime management of Grid applications using PRAGMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhu, H. ; Dept. of Electr. & Comput. Eng., Rutgers, State Univ. of New Jersey, Piscataway, NJ, USA ; Parashar, M. ; Yang, J. ; Zhang, Y.
more authors

The emergence of the computational Grid and the potential for seamless aggregation, integration and interactions has made it possible to conceive a new generation of realistic, scientific and engineering simulations of complex physical phenomena. The inherently heterogeneous and dynamic nature of these application and the Grid presents significant runtime management challenges. In this paper we extend the PRAGMA framework to enable self adapting, self optimizing runtime management of dynamically adaptive applications. Specifically, we present the design, prototype implementation and initial evaluation of policies and mechanisms that enable PRAGMA to autonomically manage, adapt and optimize structured adaptive mesh refinement applications (SAMR) based on current system and application state and predictive models for system behavior and application performance. We use the 3-D adaptive Richtmyer-Meshkov compressible fluid dynamics application and Beowulf clusters at Rutgers University, University of Arizona, and NERSC to develop our performance models, and define and evaluate our adaptation policies. In our prototype, the predictive performance models capture computational and communicational loads and, along with current system state, adjust processors capacities at runtime to enable the application to adapt and optimize its performance.

Published in:

Parallel and Distributed Processing Symposium, 2003. Proceedings. International

Date of Conference:

22-26 April 2003