By Topic

Protein structure prediction by applying an evolutionary algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Day, R.O. ; Dept of Electr. Eng., Air Force Inst. of Technol., Dayton, OH, USA ; Lamont, G.B. ; Pachter, R.

Interest in protein structure prediction is widespread, and has been previously addressed using evolutionary algorithms, such as the simple genetic algorithm (GA), messy GA (mga), fast messy GA (fmGA), and linkage learning GA (LLGA). However, past research used off the shelf software such as GENOCOP, GENESIS, and mGA. In this study we report results of a modified fmGA, which is found to be "good" at finding semi-optimal solutions in a reasonable time. Our study focuses on tuning this fmGA in an attempt to improve the effectiveness and efficiency of the algorithm in solving a protein structure and in finding better ways to identify secondary structures. Problem definition, protein model representation, mapping to algorithm domain, tool selection modifications and conducted experiments are discussed.

Published in:

Parallel and Distributed Processing Symposium, 2003. Proceedings. International

Date of Conference:

22-26 April 2003