By Topic

Multiversion scheduling in rechargeable energy-aware real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rusu, C. ; Dept. of Comput. Sci., Pittsburgh Univ., PA, USA ; Melhem, R. ; Mosse, D.

In the context of battery-powered real-time systems three constraints need to be addressed: energy; deadlines; and task rewards. Many future real-time systems will count on different software versions, each with different rewards, time and energy requirements, to achieve a variety of QoS-aware tradeoffs. We propose a solution that allows the device to run the most valuable task versions while still meeting all deadlines and without depleting the energy. Assuming that the battery is rechargeable, we also propose: (a) a static solution that maximizes the system value assuming a worst-case scenario (i.e., worst-case task execution times); and (b) a dynamic scheme that takes advantage of the extra energy in the system when worst-case scenarios do not happen. Three dynamic policies are shown to make better use of the recharging energy while improving the system value.

Published in:

Real-Time Systems, 2003. Proceedings. 15th Euromicro Conference on

Date of Conference:

2-4 July 2003