By Topic

Growth of oxide seed layers on Ni and other technologically interesting metal substrates: issues related to formation and control of sulfur superstructures for texture optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

The current carrying capabilities of RABiTS are connected to the crystalline quality of the seed buffer layer and the stability of the metal/seed layer interface. Our study shows that the epitaxial growth of commonly used seed layers on textured Ni is mediated by a sulfur superstructure present on the metal surface. Many structural defects generated during seed layer growth (secondary orientations, in-plane rotation, incomplete cube texture) can be related to the S surface concentration and superstructure coverage. More generally, our results indicate that the epitaxial deposition of several classes of oxides (fluorite, perovskite, RE2O3) on several {100}<100> fcc metals depends, in addition to chemical stability and lattice match, on the existence and optimization of S superstructures on the metal surface. On these bases, we discuss issues related to the growth of different oxides on Ni, Ni-alloys, and Pd surfaces having different chemical and structural properties.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:13 ,  Issue: 2 )