By Topic

The man-loading high-temperature superconducting Maglev test vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Suyu Wang ; Appl. Supercond. Lab., Southwest Jiaotong Univ., Chengdu, China ; Jiasu Wang ; Xingzhi Wang ; Zhongyou Ren
more authors

The first man-loading high-temperature superconducting (HTS) Maglev test vehicle in the world was successfully developed on Dec. 31, 2000 in the Applied Superconductivity Laboratory, Southwest Jiaotong University, China. Heretofore over 24 500 passengers took the vehicle, and it has been operating back and forth for about 400 km. The HTS Maglev vehicle provides inherent stability both in the vertical and lateral direction, so no control system is needed. The only control system is used for linear motor driving devices. The melt-textured YBaCuO bulk superconductors are fixed on the bottom of a liquid nitrogen vessel and cooled by liquid nitrogen. The bottom thickness of the rectangle liquid nitrogen vessel with its thin wall is only 3 mm. The onboard HTS Maglev module is placed over the guideway. The guideway consists of two parallel permanent magnetic tracks, whose concentrating magnetic field at 20 mm height above the surface is about 0.5 T. The levitation forces of 8 HTS Maglev modules were measured. The total levitation force of 8 onboard Maglev modules was 10431 N at the levitation gap of 10 mm, and 8486 N at the levitation gap of 15 mm, respectively. These results were measured on May 28, 2002.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:13 ,  Issue: 2 )