By Topic

Demonstration of the stress-minimized force-balanced coil concept for SMES

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

Strong electromagnetic force caused by high magnetic field and coil current is a serious problem in SMES systems. In facing this problem, we proposed the concept of Force-Balanced Coil (FBC) which is a helically wound toroidal coil. Based on the virial theorem, the FBC can minimize structure requirements for energy storage by selecting an optimal number of poloidal turns. We designed and fabricated a small experimental device which is composed of inner and outer helical coils mutually wound in opposite toroidal directions using NbTi superconductors. The distribution of the working stresses in this device can be changed by selecting the optimal current ratios between inner and outer coil currents. From the experimental results, we demonstrated the validity of the FBC concept.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:13 ,  Issue: 2 )