By Topic

Inductive superconducting transition-edge photon and particle detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hao, L. ; Nat. Phys. Lab., Teddington, UK ; Macfarlane, J.C. ; Josephs-Franks, P. ; Gallop, J.C.

We propose a novel type of sensor where the sensitive element is an isolated, passive absorber of extremely low thermal mass, maintained close to its superconducting-normal transition, and strongly inductively coupled to a SQUID sensor. Incoming particles or photons are sensed in terms of a transient change in the inductive coupling, rather than a change in resistance. Energy sensitivity and response time can then be defined by the thermal mass of the absorber and its thermal contact with a substrate, independently of any electrical connections. An ultimate energy resolution of order 10-25 J/Hz is theoretically estimated, based on the properties of the SQUID and the dimensions of the absorber. Calculations of the thermal properties of the absorber suggest that a response time of 1 ns should be feasible, although in practice this will be limited by the bandwidth of the SQUID amplifier. Proof-of-principle measurements on a prototype device are presented, where a SQUID flux noise level of 4×10-7 fluxon/Hz1/ was achieved and laser-induced superconducting-normal transitions of a thin-film Pb-Sn absorber were clearly demonstrated.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:13 ,  Issue: 2 )