By Topic

Design and component test of a tiny processor based on the SFQ technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yoshikawa, N. ; Dept. of Electr. & Comput. Eng., Yokohama Nat. Univ., Japan ; Matsuzaki, F. ; Nakajima, N. ; Fujiwara, K.
more authors

An eight-bit SFQ processor has been designed and some key components have been tested to confirm feasibility of the large-scale SFQ digital circuit. The designed processor is composed of a one-bit ALU, two eight-bit registers with local clock generators, an instruction register, a five-bit program counter, a state controller, and a 32-byte register file. A bit-serial architecture and a distributed local clock architecture, where each register has its own local clock generator, have been employed in order to increase the local clock frequency. The target clock frequency is 16 GHz and 10 GHz for the NEC 2.5 kA/cm2 and Hypres 1 kA/cm2 Nb processes. On the circuit design level, we have used a data-driven self-timed architecture and a binary decision diagram, which reduce the timing design difficulty in high frequency operation. The processor, which contains 7,300 Josephson junctions, has been designed by using a cell-based design methodology with the assistance of a top-down CAD environment. We have successfully tested some important circuit blocks, including a one-bit ALU, eight-bit registers, and a demultiplexer for register files.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:13 ,  Issue: 2 )