By Topic

Full-wave 2D and 3D spectral domain analysis of HTS multistrip multilayer lossy structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vendik, I. ; Dept. of Microelectron. & Radio Eng., St. Petersburg Electrotech. Univ., Russia ; Deleniv, A. ; Gashinova, M. ; Kolmakov, I.
more authors

The 2D and 3D CAD tools for modeling planar microwave devices are developed. The full-wave 2D analysis based on Method of Moments (MoM) is used for calculation of propagation characteristics of slot- and stripmulticonductor lossy lines embedded in multilayer lossy media. The 3D analysis based on MoM allows considering an arbitrary conductor structure embedded in a multilayered anisotropic media. Two examples of simulation are given. The modeling of the structure consisting of four coupled slots in HTS film based on a bilayered substrate with a tunable upper ferroelectric layer was performed by 2D-analysis. The results of simulation are analyzed for estimation of the insertion loss for each propagation mode. The simulation by 3D-analysis of the HTS microstrip resonator based on ferrite-MgO substrate has been done. The comparison of the HTS microstrip line current distribution simulated by 2D and 3D approaches is implemented and a high accuracy of used models is demonstrated.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:13 ,  Issue: 2 )