By Topic

New fabrication process for Josephson tunnel junctions using photosensitive polyimide insulation layer for superconducting integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
K. Kikuchi ; Nat. Inst. of Adv. Ind. Sci. & Technol., Ibaraki, Japan ; S. Segawa ; Eun-Sil Jung ; H. Nakagawa
more authors

Photosensitive polyimide, synthesized by block copolymerization, is expected to be an excellent insulation layer in LSI circuits in the future. This polyimide has a higher thermal resistance than those of the other organic polymers. It also has good electric properties such as a high break down voltage and a low dielectric constant. We propose a new fabrication process for the Josephson tunnel junction using a photosensitive polyimide. It is possible to simplify the fabrication process of the Josephson tunnel junction, because the photosensitive polyimide is used as the insulation layer instead of conventional inorganic insulation films without an etching process. We fabricated Nb/Al-AlOx/Nb Josephson tunnel junctions using this new process. The junctions show excellent current-voltage (I-V) characteristics with Vm values more than 80 mV.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:13 ,  Issue: 2 )